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Rigid motion on R2

A rigid motion is a bijection defined for x = (x1, x2) ∈ R2, as

Tabθ(x) =
(

cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
+

(
a
b

)
with a, b ∈ R and θ ∈ [0, 2π[.
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Rigid motion on Z2

A digital rigid motion on Z2 is defined for p = (p1,p2) ∈ Z2 as

TPoint(p) = D ◦ Tabθ(p) =
(

[p1 cos θ − p2 sin θ + a]
[p1 sin θ + p2 cos θ + b]

)
where D : R2 → Z2 is digitization (a rounding function).
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Examples of rigid motions on Z2: Image registration

Dataset : Histological sections

(Laboratory ICube - Strasbourg, France)
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Topological and geometrical preservation

Original image Transformed image
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Objective
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The proposed method

Polygonization

(Re)digitization

Rigid motion
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Shape and digitization

Given a finite and connected subset X ⊂ R2, its Gauss digitization
is defined as :

X = X ∩ Z2.
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Digitization and topology preservation

Given a finite and connected subset X ⊂ R2, its Gauss digitization
is defined as:

X = X ∩ Z2.

Topology can be altered under the digitization process.
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r-regularity

A finite and connected subset X ⊂ R2 is r-regular if for each
boundary point of X, there exist two tangent open balls of radius
r, lying entirely in X and its complement X, respectively.

Definition [Pavlidis, 1982]

10 / 34



Motivations Digitization Rigid motions on Z2 Results Conclusion

r-regularity for topology preservation

An r-regular set X ⊂ R2 has the same topological structure as its
digitized version X = X ∩ Z2 if r ≥

√
2

2 .

Proposition [Pavlidis, 1982]

Objects with non-smooth boundaries (e.g. polygons)?
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r-regularity

Let X ⊂ R2 be a bounded and simply connected (i.e., connected
and wihtout hole) set. If
I X 	 Br (rep. X 	 Br) is non-empty and connected, and
I X = X 	 Br ⊕ Br (resp. X = X 	 Br ⊕ Br)
for a given r > 0, we say that X is r-regular.

Definition (in Mathematical Morphology)
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Quasi-r-regularity

Let X ⊂ R2 be a bounded and simply connected set. If
I X 	 Br (resp. X 	 Br) is non-empty and connected, and
I X ⊆ X 	 Br ⊕ Br′ (resp. X ⊆ X 	 Br ⊕ Br′ )
for r′ ≥ r > 0, X is quasi-r-regular with “margin” r′ − r.

Definition [Ngo et al., 2018]
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Quasi-1-regularity for topology preservation

If X is quasi-1-regular with margin
√

2− 1, then X = X ∩ Z2 and
X = X ∩ Z2 are both 4-connected.

Proposition [Ngo et al., 2018]

I X ◦ B1 = X 	 B1 ⊕ B1 is 1-regular,
then (X ◦ B1) ∩ Z2 is 4-connected.

I With any position of Z2, if there
exists r ∈ Z2 in X \ (X ◦ B1), then r is
4-adjacent to a point of (X ◦ B1) ∩ Z2.

A simple verification of quasi-regularity for polygons is needed.

14 / 34



Motivations Digitization Rigid motions on Z2 Results Conclusion

Quasi-1-regularity for topology preservation

If X is quasi-1-regular with margin
√

2− 1, then X = X ∩ Z2 and
X = X ∩ Z2 are both 4-connected.

Proposition [Ngo et al., 2018]

I X ◦ B1 = X 	 B1 ⊕ B1 is 1-regular,
then (X ◦ B1) ∩ Z2 is 4-connected.

I With any position of Z2, if there
exists r ∈ Z2 in X \ (X ◦ B1), then r is
4-adjacent to a point of (X ◦ B1) ∩ Z2.

A simple verification of quasi-regularity for polygons is needed.

14 / 34



Motivations Digitization Rigid motions on Z2 Results Conclusion

Quasi-1-regularity for topology preservation

If X is quasi-1-regular with margin
√

2− 1, then X = X ∩ Z2 and
X = X ∩ Z2 are both 4-connected.

Proposition [Ngo et al., 2018]

Idea of proof:
I X ◦ B1 = X 	 B1 ⊕ B1 is 1-regular,

then (X ◦ B1) ∩ Z2 is 4-connected.

I With any position of Z2, if there
exists r ∈ Z2 in X \ (X ◦ B1), then r is
4-adjacent to a point of (X ◦ B1) ∩ Z2.

A simple verification of quasi-regularity for polygons is needed.

14 / 34



Motivations Digitization Rigid motions on Z2 Results Conclusion

Quasi-1-regularity for topology preservation

If X is quasi-1-regular with margin
√

2− 1, then X = X ∩ Z2 and
X = X ∩ Z2 are both 4-connected.

Proposition [Ngo et al., 2018]

Idea of proof:
I X ◦ B1 = X 	 B1 ⊕ B1 is 1-regular,

then (X ◦ B1) ∩ Z2 is 4-connected.
I With any position of Z2, if there

exists r ∈ Z2 in X \ (X ◦ B1), then r is
4-adjacent to a point of (X ◦ B1) ∩ Z2.

r

A simple verification of quasi-regularity for polygons is needed.

14 / 34



Motivations Digitization Rigid motions on Z2 Results Conclusion

Quasi-1-regularity for topology preservation

If X is quasi-1-regular with margin
√

2− 1, then X = X ∩ Z2 and
X = X ∩ Z2 are both 4-connected.

Proposition [Ngo et al., 2018]

Idea of proof:
I X ◦ B1 = X 	 B1 ⊕ B1 is 1-regular,

then (X ◦ B1) ∩ Z2 is 4-connected.
I With any position of Z2, if there

exists r ∈ Z2 in X \ (X ◦ B1), then r is
4-adjacent to a point of (X ◦ B1) ∩ Z2.

r

A simple verification of quasi-regularity for polygons is needed.
14 / 34



Motivations Digitization Rigid motions on Z2 Results Conclusion

Discrete-1-regularity

Let P be a simple polygon in R2, V and E be respectively the set
of vertices and edges of P. If P satisfies:
I ∀v = e1 ∩ e2 ∈ V with e1, e2 ∈ E, ∀e ∈ E \ {e1, e2}, d(v, e) ≥ 2,
I ∀v = e1 ∩ e2 ∈ V with e1, e2 ∈ E, n(e1).n(e2) ≥ 0,
then P is discrete-1-regular.

Definition [Ngo et al., 2018]
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Discrete-1-regularity and quasi-1-regularity

Let P ⊂ R2 be a simple polygon. If P is discrete-1-regular, then P
is quasi-1-regular.

Proposition [Ngo et al., 2018]

I d(v, e) ≥ 2, thus P	 B1 is non-empty
and connected.

I n(e1).n(e2) ≥ 0 =⇒
√

2
2 ≤ sin θ

2 ≤ 1.
Since sin θ

2 = 1
d(c,v) , r ≤ d(c, v) ≤

√
2.

Thus X ⊆ X 	 B1 ⊕ B√
2.
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Discrete-1-regularity and quasi-1-regularity

Let P ⊂ R2 be a simple polygon. If P is discrete-1-regular, then P
is quasi-1-regular.

Proposition [Ngo et al., 2018]

Discrete-1-regular objects is a subset of
quasi-1-regular objects for polygons
I Smooth boundary
I Noisy boundary

If P is discrete-1-regular, then P ∩ Z2 is 4-connected.

Lemma [Ngo et al., 2018]

16 / 34



Motivations Digitization Rigid motions on Z2 Results Conclusion

Discrete-1-regularity and quasi-1-regularity

Let P ⊂ R2 be a simple polygon. If P is discrete-1-regular, then P
is quasi-1-regular.

Proposition [Ngo et al., 2018]

Discrete-1-regular objects is a subset of
quasi-1-regular objects for polygons
I Smooth boundary
I Noisy boundary

If P is discrete-1-regular, then P ∩ Z2 is 4-connected.

Lemma [Ngo et al., 2018]

16 / 34



Motivations Digitization Rigid motions on Z2 Results Conclusion

The proposed method

Polygonization

(Re)digitization

Rigid motion

17 / 34



Motivations Digitization Rigid motions on Z2 Results Conclusion

Polygonization of digital objects

The method is based on contour points and the convex hull
1. Extract 8-connected contour points of X
2. Compute convex hull of X
3. Find the segments that fit concave parts of X with reversibility:

X = P(X) ∩ Z2
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Rigid motion with convex decomposition

Polygonization

(Re)digitization

Rigid motion
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Rigid motion with convex decomposition

Polygonization

Transformed

Result

Rigid motion

Convex

Decomposition

(Re)digitization
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Convex decomposition of polygons

The method [Lien and Amato, 2006] decomposes a simple poly-
gon into convex pieces by iteratively removing the most signifi-
cant non-convex features.

P =
⋃

Pi

X = P(X) ∩ Z2 =
⋃ (

Pi ∩ Z2).
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Digitization of convex object using H-representation

Each decomposed convex polygon Pi is represented by a set of
half-planesR(Pi) such that

Pi ∩ Z2 =
( ⋂

H∈R(Pi)

H
)
∩ Z2

whereR(Pi) is the minimal set of half-planes that include Pi.
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Convex decomposition of polygons
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Convex decomposition of polygons
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Topological preserving rigid motions

TPoly(X) = T (Poly(X)) ∩ Z2

Rigid motion with convex decomposition

Let X ⊂ Z2 be a digital object. Let P(X) ⊂ R2 be a polygon such
that P(X) ∩ Z2 = X. If P(X) is discrete-1-regular, then TPoly(X) is
4-connected.

Proposition [Ngo et al., 2018]
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Experimental results

θ = π
10 θ = 2π

10 θ = 3π
10 θ = 4π

10 θ = π
2

TPoint

TPoly
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Experimental results

X TPoint(X) TPoly(X)
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Code sources

Code sources are available at the github repository:
https://github.com/ngophuc/RigidTransformAcd2D

I Compilation avec Cmake1

I Dependence : DGtal library2

I Code packages:

I polygonization computes the polygon from a digital image
I decomposeShapeAcd2d decomposes a polygon into the

convex parts using the ACD method3

I transformAConvexShape implements the proposed rigid
motion method.

I Examples on github repository webpage

1https://cmake.org/
2https://dgtal.org
3https://github.com/jmlien/acd2d
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Online demonstration

An online demonstration based on the DGtal library, is available at the
following website:
http://ipol-geometry.loria.fr/˜phuc/ipol_demo/RigidMotion2D
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Conclusion

Contributions:
I A notion of discrete-1-regularity for polygonal objects, as a

subset of quasi-1-regular objects, that provides sufficient
conditions for topology preservation by Gaussian digitization.

I A rigid motion scheme based on polygonal representation
that preserves geometry and topology properties of the
transformed digital object.

Perspectives:
I Necessary conditions for topology and geometry preservation.
I A polygonization method providing discrete-regular

polygons of digital objects.
I Regularization method for non discrete-regular polygons.
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Thank you for your attention!
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Extension to 3D

Let X ⊂ R3 be a bounded, simply connected set. If
I X 	 Br (resp. X 	 Br) is non-empty and connected, and
I X ⊆ X 	 Br ⊕ Br′ (resp. X ⊆ X 	 Br ⊕ Br′ )
for r′ ≥ r > 0, X is quasi-r-regular with “margin” r′ − r.

Definition

Let X ⊂ Z3 be a digital object. If X is quasi-1-regular with margin
2√
3
− 1, then X = X ∩ Z3 and X = X ∩ Z3 are both 6-connected.

Proposition
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Experimental results

X TPoint(X) TPoly(X)
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