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Rigid motion on R?

' D

A rigid motion is a bijection defined for x = (x3,x2) € R?, as

[ cosf —sind X1 a
7;179()()_<Sin9 cos@) (Xz >+(b)

witha,b € Rand 6 € [0, 27].

\. J

2/34



Motivations
0e00000

Rigid motion on Z?

A digital rigid motion on Z? is defined for p = (p1, p2) € Z? as

TPaint(p) =Do Ebe(p) _ ( [pl cosf — ppsinf + a] )

[P1sin @ 4 pz cos 6§ + b]

where D : R? — 72 is digitization (a rounding function).
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Examples of rigid motions on Z?: Image registration
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Dataset : Histological sections

(Laboratory ICube - Strasbourg, France)
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Dataset : Histological sections
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Registered image
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Topological and geometrical preservation

Original image Transformed image
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Objective
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The proposed method
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Digitization
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Shape and digitization

Given a finite and connected subset X C R?, its Gauss digitization

is defined as :
X =XnZ2%.
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Digitization
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Digitization and topology preservation

Given a finite and connected subset X C R?, its Gauss digitization

is defined as:
X =XnZ2%.

Topology can be altered under the digitization process.
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r-regularity

Definition [Pavlidis, 1982]

A finite and connected subset X C R? is r-reqular if for each
boundary point of X, there exist two tangent open balls of radius
r, lying entirely in X and its complement X, respectively.
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r-regularity for topology preservation

Proposition [Pavlidis, 1982]

An r-regular set X C R? has the same topological structure as its
digitized version X = X N Z2ifr > %
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r-regularity for topology preservation

Proposition [Pavlidis, 1982]

An r-regular set X C R? has the same topological structure as its
digitized version X = X N Z2ifr > %
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Objects with non-smooth boundaries (e.g. polygons)?
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r-regularity

Definition (in Mathematical Morphology)

Let X C R? be a bounded and simply connected (i.e., connected
and wihtout hole) set. If

» X © B, (rep. X © B,) is non-empty and connected, and
» X=XOB,®B, (resp. X = XS B, ®By)
for a given r > 0, we say that X is r-regular.
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Quasi-r-regularity

Definition [Ngo et al., 2018]

Let X C R? be a bounded and simply connected set. If
» X © B, (resp. X & B,) is non-empty and connected, and
» XCXOB, @By (resp. X C X© B, ® B, )

for v > r > 0, X is quasi-r-regular with “margin” v’ — r.
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Quasi-1-regularity for topology preservation

Proposition [Ngo et al., 2018]

If X is quasi-1-regular with margin V2 —1,then X = X N Z?* and
X = X N Z? are both 4-connected.
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Quasi-1-regularity for topology preservation

Proposition [Ngo et al., 2018]

If X is quasi-1-regular with margin V2 —1,then X = X N Z?* and
X = X N Z? are both 4-connected.

Idea of proof:

» X oBy =X B; ® B is l-regular,
then (X o By) N Z? is 4-connected.

o A
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Quasi-1-regularity for topology preservation

Proposition [Ngo et al., 2018]

If X is quasi-1-regular with margin V2 —1,then X = X N Z?* and
X = X N Z? are both 4-connected.

Idea of proof:

» X oBy =X B; ® B is l-regular,
then (X o By) N Z? is 4-connected.

» With any position of Z?, if there
exists r € Z? in X \ (X o By), then r is
4-adjacent to a point of (X o By) N Z2.
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X = X N Z? are both 4-connected.

Idea of proof:

» X oBy =X B; ® B is l-regular,
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» With any position of Z?, if there
exists r € Z? in X \ (X o By), then r is
4-adjacent to a point of (X o By) N Z2.

N—

A simple verification of quasi-regularity for polygons is needed.
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Discrete-1-regularity

Definition [Ngo et al., 2018] .

Let P be a simple polygon in R?, V and E be respectively the set
of vertices and edges of P. If P satisfies:

» Yo=e1Ney, € Vwithey,ep € E, Ve € E\ {eg,e2},d(v,e) > 2,
» Yo =e1Ney € Vwithey, e, € E, n(er).n(ex) >0,
then P is discrete-1-regular.
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Discrete-1-regularity and quasi-1-regularity

Proposition [Ngo et al., 2018]

Let P C R? be a simple polygon. If P is discrete-1-regular, then P
is quasi-1-regular.
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Discrete-1-regularity and quasi-1-regularity

Proposition [Ngo et al., 2018]

Let P C R? be a simple polygon. If P is discrete-1-regular, then P
is quasi-1-regular.

Idea of proof:

» d(v,e) > 2, thus P & By is non-empty
and connected.
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Discrete-1-regularity and quasi-1-regularity

Proposition [Ngo et al., 2018]

Let P C R? be a simple polygon. If P is discrete-1-regular, then P
is quasi-1-regular.

Idea of proof: ‘
» d(v,e) > 2, thus P © B is non-empty & O
and connected. »
V2 . 0 €1 €2
> n(er).n(e) > 0= % <sing <1. Y

Since sing = ﬁ,r <d(c,v) < V2.
ThungXeBleBBﬁ.

16 / 34



Digitization
000000000e

Discrete-1-regularity and quasi-1-regularity

Proposition [Ngo et al., 2018]

Let P C R? be a simple polygon. If P is discrete-1-regular, then P
is quasi-1-regular.

Discrete-1-regular objects is a subset of
quasi-1-regular objects for polygons

» Smooth boundary
» Noisy boundary
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Discrete-1-regularity and quasi-1-regularity

Proposition [Ngo et al., 2018]

Let P C R? be a simple polygon. If P is discrete-1-regular, then P
is quasi-1-regular.

Discrete-1-regular objects is a subset of
quasi-1-regular objects for polygons

» Smooth boundary
» Noisy boundary

Lemma [Ngo et al., 2018]

If P is discrete-1-regular, then P N Z? is 4-connected.
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Polygonization of digital objects

7

The method is based on contour points and the convex hull
1. Extract 8-connected contour points of X

2. Compute convex hull of X
3. Find the segments that fit concave parts of X with reversibility:

X = P(X) N Z?
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Rigid motion with convex decomposition
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Rigid motion with convex decomposition
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Convex decomposition of polygons

The method [Lien and Amato, 2006] decomposes a simple poly-
gon into convex pieces by iteratively removing the most signifi-
cant non-convex features.

P= ) 2

X=P(X)nz*=|J (PinZ?).
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Digitization of convex object using H-representation

[ Each decomposed convex polygon P; is represented by a set of ]
half-planes R (P;) such that

pnz?=( (| H)nz?
HER(Pi)
where R(P;) is the minimal set of half-planes that include P;.
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Digitization of convex object using H-representation

[ Each decomposed convex polygon P; is represented by a set of ]
half-planes R (P;) such that

pnz?=( (| H)nz?
HER(Pi)
where R(P;) is the minimal set of half-planes that include P;.
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Digitization of convex object using H-representation

[ Each decomposed convex polygon P; is represented by a set of ]
half-planes R (P;) such that

pnz?=( (| H)nz?
HGR(Pi)
where R(P;) is the minimal set of half-planes that include P;.
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Convex decomposition of polygons
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Topological preserving rigid motions

Rigid motion with convex decomposition

Proposition [Ngo et al., 2018]

Let X C Z? be a digital object. Let P(X) C R? be a polygon such
that P(X) N Z? = X. If P(X) is discrete-1-regular, then Tp,y, (X) is
4-connected.
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Code sources

Code sources are available at the github repository:
https://github.com/ngophuc/RigidTransformAcd2D

» Compilation avec Cmake'
» Dependence : DGtal library?
» Code packages:

» polygonization computes the polygon from a digital image

» decomposeShapeAcd2d decomposes a polygon into the
convex parts using the ACD method?

» transformAConvexShape implements the proposed rigid
motion method.

» Examples on github repository webpage

Mttps://cmake.org/
https://dgtal.org
*https://github.com/jmlien/acd2d

29 /34


https://github.com/ngophuc/RigidTransformAcd2D
https://cmake.org/
https://dgtal.org
https://github.com/jmlien/acd2d

Results
00000

Online demonstration

An online demonstration based on the DGtal library, is available at the

following website:
http://ipol-geometry.loria.fr/~phuc/ipol_demo/RigidMotion2D

Rigid Motion of Quasi Regular Object: Online Demonstration
article || demo || archive

Please cite the reference article if you publish results obtained with this online demo.

This demonstration applies the Rigid Motion on Quasi Regular Objects.

Select Data

Click on an image to use it as the algorithm input.

- % W ik

circle10 square21 flower leaf snowflake
image credits
Upload 2D Images
Upload your 2D binary image to use as the algorithm input. Note that the algorithm handles only a well-composed object in the image.

inputimage Choose file No file chosen

Images larger than 16777216 pixels will be resized. Upload size s limited to 16MB per image file and 10MB for the whole upload set
NG format is supported. The uploaded will be publicly archived unless you switch to private mode on the result page.
Only upload suitable images. See the copyright and legal conditions for detalls.


http://ipol-geometry.loria.fr/~phuc/ipol_demo/RigidMotion2D
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Conclusion

Contributions:

» A notion of discrete-1-regularity for polygonal objects, as a
subset of quasi-1-reqular objects, that provides sufficient
conditions for topology preservation by Gaussian digitization.

» A rigid motion scheme based on polygonal representation
that preserves geometry and topology properties of the
transformed digital object.

Perspectives:
» Necessary conditions for topology and geometry preservation.

» A polygonization method providing discrete-regular
polygons of digital objects.

» Regularization method for non discrete-regular polygons.
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Extension to 3D

w

Let X C R? be a bounded, simply connected set. If
» X © B, (resp. X © B,) is non-empty and connected, and
» XCXOB, ®By (rtesp. X C XS B, ®B,)

for v > r > 0, X is quasi-r-regular with “margin” v’ — r.

\.

Proposition

Let X C Z° be a digital object. If X is quasi-1-regular with margin
% —1,then X = XN Z3 and X = X N Z3 are both 6-connected.
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