	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
00000	000000000	0000000	000000	000000

Discrete regular polygons for digital shape rigid motion via polygonization

Phuc Ngo Yukiko Kenmochi Nicolas Passat Isabelle Debled-Rennesson

RRPR'18 – 20 August 2018

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
●000000	000000000		000000	000000
Rigid mo	otion on \mathbb{R}^2			

A rigid motion is a bijection defined for $x = (x_1, x_2) \in \mathbb{R}^2$, as

$$\mathcal{T}_{ab\theta}(\mathbf{x}) = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \mathbf{x}_1\\ \mathbf{x}_2 \end{pmatrix} + \begin{pmatrix} a\\ b \end{pmatrix}$$

with $a, b \in \mathbb{R}$ and $\theta \in [0, 2\pi]$.

ъ

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0●00000	000000000	00000000	000000	000000
Rigid ma	otion on \mathbb{Z}^2			

A digital rigid motion on \mathbb{Z}^2 is defined for $p=(p_1,p_2)\in\mathbb{Z}^2$ as

$$T_{Point}(\mathbf{p}) = D \circ \mathcal{T}_{ab\theta}(\mathbf{p}) = \begin{pmatrix} [\mathbf{p}_1 \cos \theta - \mathbf{p}_2 \sin \theta + a] \\ [\mathbf{p}_1 \sin \theta + \mathbf{p}_2 \cos \theta + b] \end{pmatrix}$$

where $D : \mathbb{R}^2 \to \mathbb{Z}^2$ is digitization (a rounding function).

Examples of rigid motions on \mathbb{Z}^2 : Image registration

Dataset : Histological sections

Examples of rigid motions on \mathbb{Z}^2 : Image registration

Dataset : Histological sections

Registered image

Examples of rigid motions on \mathbb{Z}^2 : Image registration

Dataset : Histological sections

Registered image

Examples of rigid motions on \mathbb{Z}^2 : Image registration

Dataset : Histological sections

Registered image

MotivationsDigitizationRigid motions on \mathbb{Z}^2 ResultsConclusion0000000000000000000000000000000000

Topological and geometrical preservation

Original image

Transformed image

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000●00	000000000		000000	000000

Objective

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
00000●0	000000000	0000000	000000	000000

The proposed method

000000	000000000	0000000	000000	000000
Motivations 000000	Digitization	Rigid motions on Z ²	Results 000000	Conclusion

The proposed method

C1	1 1			
000000	000000000	0000000	000000	000000
Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion

Shape and digitization

Given a finite and connected subset $X \subset \mathbb{R}^2$, its Gauss digitization is defined as :

 $\mathsf{X} = X \cap \mathbb{Z}^2.$

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
	000000000			

Digitization and topology preservation

Given a finite and connected subset $X \subset \mathbb{R}^2$, its Gauss digitization is defined as:

$$\mathsf{X} = X \cap \mathbb{Z}^2.$$

Topology can be altered under the digitization process.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	000000000		000000	000000
-				

r-regularity

Definition [Pavlidis, 1982]

A finite and connected subset $X \subset \mathbb{R}^2$ is *r*-*regular* if for each boundary point of *X*, there exist two tangent open balls of radius *r*, lying entirely in *X* and its complement \overline{X} , respectively.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
000000	000000000	0000000	000000	000000

Proposition [Pavlidis, 1982]

An *r*-regular set $X \subset \mathbb{R}^2$ has the same topological structure as its digitized version $X = X \cap \mathbb{Z}^2$ if $r \ge \frac{\sqrt{2}}{2}$.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
000000	000000000	0000000	000000	000000

Proposition [Pavlidis, 1982]

An *r*-regular set $X \subset \mathbb{R}^2$ has the same topological structure as its digitized version $X = X \cap \mathbb{Z}^2$ if $r \ge \frac{\sqrt{2}}{2}$.

Objects with non-smooth boundaries (e.g. polygons)?

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	000000000	0000000	000000	000000

r-regularity

Definition (in Mathematical Morphology)

Let $X \subset \mathbb{R}^2$ be a bounded and simply connected (i.e., connected and wihtout hole) set. If

- $X \ominus B_r$ (rep. $\overline{X} \ominus B_r$) is non-empty and connected, and
- $X = X \ominus B_r \oplus B_r$ (resp. $\overline{X} = \overline{X} \ominus B_r \oplus B_r$)

for a given r > 0, we say that *X* is *r*-*regular*.

	" a a u la mitra			
0000000	0000000000	00000000	000000	000000
Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion

2uasi-r-regularity

Definition [Ngo et al., 2018]

Let $X \subset \mathbb{R}^2$ be a bounded and simply connected set. If $\blacktriangleright X \ominus B_r$ (resp. $\overline{X} \ominus B_r$) is non-empty and connected, and $\blacktriangleright X \subseteq X \ominus B_r \oplus B_{r'}$ (resp. $\overline{X} \subseteq \overline{X} \ominus B_r \oplus B_{r'}$) for $r' \ge r > 0$, X is *quasi-r-regular* with "margin" r' - r.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
000000	000000000	0000000	000000	000000

Proposition [Ngo et al., 2018]

If *X* is quasi-1-regular with margin $\sqrt{2} - 1$, then $X = X \cap \mathbb{Z}^2$ and $\overline{X} = \overline{X} \cap \mathbb{Z}^2$ are both 4-connected.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
000000	000000000	0000000	000000	000000

Proposition [Ngo et al., 2018]

If *X* is quasi-1-regular with margin $\sqrt{2} - 1$, then $X = X \cap \mathbb{Z}^2$ and $\overline{X} = \overline{X} \cap \mathbb{Z}^2$ are both 4-connected.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
000000	000000000	0000000	000000	000000

Proposition [Ngo et al., 2018]

If *X* is quasi-1-regular with margin $\sqrt{2} - 1$, then $X = X \cap \mathbb{Z}^2$ and $\overline{X} = \overline{X} \cap \mathbb{Z}^2$ are both 4-connected.

Idea of proof:

► $X \circ B_1 = X \ominus B_1 \oplus B_1$ is 1-regular, then $(X \circ B_1) \cap \mathbb{Z}^2$ is 4-connected.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
000000	0000000000	0000000	000000	000000

Proposition [Ngo et al., 2018]

If *X* is quasi-1-regular with margin $\sqrt{2} - 1$, then $X = X \cap \mathbb{Z}^2$ and $\overline{X} = \overline{X} \cap \mathbb{Z}^2$ are both 4-connected.

Idea of proof:

- ► $X \circ B_1 = X \ominus B_1 \oplus B_1$ is 1-regular, then $(X \circ B_1) \cap \mathbb{Z}^2$ is 4-connected.
- ▶ With any position of \mathbb{Z}^2 , if there exists $r \in \mathbb{Z}^2$ in $X \setminus (X \circ B_1)$, then *r* is 4-adjacent to a point of $(X \circ B_1) \cap \mathbb{Z}^2$.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
000000	0000000000	0000000	000000	000000

Proposition [Ngo et al., 2018]

If *X* is quasi-1-regular with margin $\sqrt{2} - 1$, then $X = X \cap \mathbb{Z}^2$ and $\overline{X} = \overline{X} \cap \mathbb{Z}^2$ are both 4-connected.

Idea of proof:

- ► $X \circ B_1 = X \ominus B_1 \oplus B_1$ is 1-regular, then $(X \circ B_1) \cap \mathbb{Z}^2$ is 4-connected.
- ▶ With any position of \mathbb{Z}^2 , if there exists $r \in \mathbb{Z}^2$ in $X \setminus (X \circ B_1)$, then *r* is 4-adjacent to a point of $(X \circ B_1) \cap \mathbb{Z}^2$.

A simple verification of quasi-regularity for polygons is needed.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	0000000000		000000	000000
	4 1 1			

Discrete-1-regularity

Definition [Ngo et al., 2018]

Let *P* be a simple polygon in \mathbb{R}^2 , *V* and *E* be respectively the set of vertices and edges of *P*. If *P* satisfies:

- ► $\forall v = e_1 \cap e_2 \in V$ with $e_1, e_2 \in E$, $\forall e \in E \setminus \{e_1, e_2\}, d(v, e) \ge 2$,
- ▶ $\forall v = e_1 \cap e_2 \in V$ with $e_1, e_2 \in E$, $n(e_1).n(e_2) \ge 0$,

then *P* is *discrete-1-regular*.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
	000000000			

Proposition [Ngo et al., 2018]

Let $P \subset \mathbb{R}^2$ be a simple polygon. If *P* is discrete-1-regular, then *P* is quasi-1-regular.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
	0000000000			

Proposition [Ngo et al., 2018]

Let $P \subset \mathbb{R}^2$ be a simple polygon. If *P* is discrete-1-regular, then *P* is quasi-1-regular.

Idea of proof:

► $d(v, e) \ge 2$, thus $P \ominus B_1$ is non-empty and connected.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
000000	0000000000	0000000	000000	000000

Proposition [Ngo et al., 2018]

Let $P \subset \mathbb{R}^2$ be a simple polygon. If *P* is discrete-1-regular, then *P* is quasi-1-regular.

Idea of proof:

- ► $d(v, e) \ge 2$, thus $P \ominus B_1$ is non-empty and connected.
- ► $n(e_1).n(e_2) \ge 0 \Longrightarrow \frac{\sqrt{2}}{2} \le \sin \frac{\theta}{2} \le 1.$ Since $\sin \frac{\theta}{2} = \frac{1}{d(c,v)}, r \le d(c,v) \le \sqrt{2}.$ Thus $X \subseteq X \ominus B_1 \oplus B_{\sqrt{2}}.$

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
	000000000			

Proposition [Ngo et al., 2018]

Let $P \subset \mathbb{R}^2$ be a simple polygon. If *P* is discrete-1-regular, then *P* is quasi-1-regular.

Discrete-1-regular objects is a subset of quasi-1-regular objects for polygons

- Smooth boundary
- Noisy boundary

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
	000000000			

Proposition [Ngo et al., 2018]

Let $P \subset \mathbb{R}^2$ be a simple polygon. If *P* is discrete-1-regular, then *P* is quasi-1-regular.

Discrete-1-regular objects is a subset of quasi-1-regular objects for polygons

- Smooth boundary
- Noisy boundary

Lemma [Ngo et al., 2018]

If *P* is discrete-1-regular, then $P \cap \mathbb{Z}^2$ is 4-connected.

000000	0000000000	0000000	000000	000000		
Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion		

The proposed method

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
		0000000		

Polygonization of digital objects

The method is based on contour points and the convex hull

- 1. Extract 8-connected contour points of X
- 2. Compute convex hull of X
- 3. Find the segments that fit concave parts of X with reversibility:

$$\mathsf{X} = P(\mathsf{X}) \cap \mathbb{Z}^2$$

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
		0000000		

Rigid motion with convex decomposition

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
		0000000		

Rigid motion with convex decomposition

 Motivations
 Digitization
 Rigid motions on Z²
 Results
 Conclusion

 0000000
 00000000
 0000000
 000000
 000000

Convex decomposition of polygons

The method [Lien and Amato, 2006] decomposes a simple polygon into convex pieces by iteratively removing the most significant non-convex features.

$$P = \bigcup P_i$$
$$\mathsf{X} = P(\mathsf{X}) \cap \mathbb{Z}^2 = \bigcup (P_i \cap \mathbb{Z}^2).$$

0000000 00000000 0000000 000000 000000	Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
	0000000	000000000	0000000	000000	000000

Digitization of convex object using H-representation

Each decomposed convex polygon P_i is represented by a set of half-planes $\mathcal{R}(P_i)$ such that

$$P_i \cap \mathbb{Z}^2 = \left(\bigcap_{\mathbf{H} \in \mathcal{R}(P_i)} \mathbf{H}\right) \cap \mathbb{Z}^2$$

where $\mathcal{R}(P_i)$ is the minimal set of half-planes that include P_i .

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
000000	000000000	0000000	000000	000000

Digitization of convex object using H-representation

Each decomposed convex polygon P_i is represented by a set of half-planes $\mathcal{R}(P_i)$ such that

$$P_i \cap \mathbb{Z}^2 = \Big(igcap_{\mathrm{H} \in \mathcal{R}(P_i)} \mathrm{H}\Big) \cap \mathbb{Z}^2$$

where $\mathcal{R}(P_i)$ is the minimal set of half-planes that include P_i .

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
		00000000		

Digitization of convex object using H-representation

Each decomposed convex polygon P_i is represented by a set of half-planes $\mathcal{R}(P_i)$ such that

$$P_i \cap \mathbb{Z}^2 = \Big(igcap_{\mathrm{H} \in \mathcal{R}(P_i)} \mathrm{H}\Big) \cap \mathbb{Z}^2$$

where $\mathcal{R}(P_i)$ is the minimal set of half-planes that include P_i .

MotivationsDigitizationRigid motions on Z²ResultsConclusion000000000000000000000000000000000000000

Convex decomposition of polygons

MotivationsDigitizationRigid motions on Z²ResultsConclusion00000000000000000000000000000000000000

Convex decomposition of polygons

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
		0000000		

Topological preserving rigid motions

Rigid motion with convex decomposition

$$T_{\mathcal{P}oly}(\mathsf{X}) = \mathcal{T}(\mathcal{P}oly(\mathsf{X})) \cap \mathbb{Z}^2$$

Proposition [Ngo et al., 2018]

Let $X \subset \mathbb{Z}^2$ be a digital object. Let $P(X) \subset \mathbb{R}^2$ be a polygon such that $P(X) \cap \mathbb{Z}^2 = X$. If P(X) is discrete-1-regular, then $T_{\mathcal{P}oly}(X)$ is 4-connected.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	000000000	00000000	●00000	000000

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	000000000		00000	000000

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	000000000	0000000	00000	000000

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	000000000	00000000	000●00	000000

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
			000000	

Code sources

Code sources are available at the github repository: https://github.com/ngophuc/RigidTransformAcd2D

- Compilation avec Cmake¹
- ▶ Dependence : DGtal library²
- Code packages:
 - polygonization computes the polygon from a digital image
 - decomposeShapeAcd2d decomposes a polygon into the convex parts using the ACD method³
 - transformAConvexShape implements the proposed rigid motion method.
- Examples on github repository webpage

```
<sup>1</sup>https://cmake.org/
<sup>2</sup>https://dgtal.org
<sup>3</sup>https://github.com/jmlien/acd2d
```

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
			00000	

Online demonstration

An online demonstration based on the DGtal library, is available at the following website:

http://ipol-geometry.loria.fr/~phuc/ipol_demo/RigidMotion2D

Rigid Motion of Quasi Regular Object: Online Demonstration

article demo archive

Please cite the reference article if you publish results obtained with this online demo.

This demonstration applies the Rigid Motion on Quasi Regular Objects.

Select Data

Click on an image to use it as the algorithm input.

image credits

Upload 2D Images

Upload your 2D binary image to use as the algorithm input. Note that the algorithm handles only a well-composed object in the image.

input image	Choose file	No file chosen	III upload		

Images larger than 16777216 pixels will be resized. Upload size is limited to 16MB per image file and 10MB for the whole upload set . PNG format is supported. The uploaded will be publicly archived unless you switch to private mode on the result page. Only upload suitable images. See the copyright and legal conditions for defails.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	000000000	00000000	000000	●00000
Conclusi	on			

Contributions:

- A notion of *discrete-1-regularity* for polygonal objects, as a subset of *quasi-1-regular* objects, that provides sufficient conditions for topology preservation by Gaussian digitization.
- A rigid motion scheme based on polygonal representation that preserves geometry and topology properties of the transformed digital object.

Perspectives:

- ► Necessary conditions for topology and geometry preservation.
- A polygonization method providing discrete-regular polygons of digital objects.
- ► Regularization method for non discrete-regular polygons.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
				000000

Thank you for your attention!

D	-			
0000000	000000000	0000000	000000	000000
Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion

References I

Kim, C. E. (1981).

On the cellular convexity of complexes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-3(6):617–625.

Latecki, L. J., Conrad, C., and Gross, A. (1998).
 Preserving topology by a digitization process.
 Journal of Mathematical Imaging and Vision, 8(2):131–159.

Latecki, L. J., Eckhardt, U., and Rosenfeld, A. (1995). Well-composed sets.

Computer Vision and Image Understanding, 61(1):70–83.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	000000000	0000000	000000	000000
Referenc	pes II			

- Lien, J.-M. and Amato, N. M. (2006). Approximate convex decomposition of polygons. *Comput. Geom. Theory Appl.*, 35(1-2):100–123.
- Ngo, P., Passat, N., Kenmochi, Y., and Talbot, H. (2014).
 Topology-preserving rigid transformation of 2D digital images.
 IEEE Transactions on Image Processing, 23(2):885–897.

Pavlidis, T. (1982).

Algorithms for graphics and image processing. Berlin: Springer, and Rockville: Computer Science Press.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	000000000	0000000	000000	000000
Fytensio	n to 3D			

Definition

Let $X \subset \mathbb{R}^3$ be a bounded, simply connected set. If

- $X \ominus B_r$ (resp. $\overline{X} \ominus B_r$) is non-empty and connected, and
- $X \subseteq X \ominus B_r \oplus B_{r'}$ (resp. $\overline{X} \subseteq \overline{X} \ominus B_r \oplus B_{r'}$)

for $r' \ge r > 0$, X is *quasi-r-regular* with "margin" r' - r.

Proposition

Let $X \subset \mathbb{Z}^3$ be a digital object. If X is quasi-1-regular with margin $\frac{2}{\sqrt{3}} - 1$, then $X = X \cap \mathbb{Z}^3$ and $\overline{X} = \overline{X} \cap \mathbb{Z}^3$ are both 6-connected.

Motivations	Digitization	Rigid motions on \mathbb{Z}^2	Results	Conclusion
0000000	000000000	0000000	000000	00000

