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Performance Evaluation

e Steers research in the long run.
* Fitness function of an evolutionary process.
e Sometimes opaque.
e Qur primary mean of analyzing systems scientifically.
e Someone has to do it!
e Better not the guy who cares about the outcome the most.
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Metrics

e Metric spaces:
e Non negativity
e |dentity
e Symmetry
e Triangle Inequality

e Metric between two annotations of the same dataset
(one being the ground-truth).
e Desired Properties in Performance Metrics:

e Metric space of performance of systems.

e Simple, intuitive.

e Proportional to perceived differences (unsaturated).
e Universal.
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mean Average Precision

e Evaluates rankings of relevant and irrelevant samples.
e Approximation of the area of the Precision-Recall curve.
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mAP Algorithm

e Get query-database distances.

Sample distances
= Query-DB distances.

Anguelos Nicolaou et al.

| LME/CVC

August 20, 2018



@)

mAP Algorithm

e Get query-database distances.

e Separate the the database in
relevant/non-relevant

Sample distances

- Relevant
- rrelevant
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mAP Algorithm

¢ Get query-database distances. - sample distances

e Separate the the database in =
relevant/non-relevant

¢ Sort by distance I|||||““
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mAP Algorithm

e Get query-database distances. . sample distances

e Separate the the database in =l
relevant/non-relevant

e Sort by distance

e Estimate Average Precision I||

Anguelos Nicolaou etal. | LME/CVC August 20, 2018



@)

mAP Algorithm

e Get query-database distances. sample distances

e Separate the the database in =@
relevant/non-relevant

e Sort by distance

e Estimate Average Precision

e Sample Average Precision
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mAP Algorithm

e Get query-database distances.

e Separate the the database in
relevant/non-relevant

e Sort by distance

e Estimate Average Precision

e Sample Average Precision

e Leave-one-out: Query in DB

e Efficiency: Computation in Distance Matrix

Matrix D
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Ranking Ambiguity

e When evaluating a retrieval system: no-problem.
* When sorting is part of the performance evaluation, sorting must be
unambiguous.
e Sometimes it is not.
e Example retrieval in 100 samples with 2 relevant:

Query Alternative Retrievals ranked by distance Average Precision
2 [ [ 5 [ . B 66.66 %
v [0 a2 3 4 s e 7 8 9. | 99100 100%
o 9 70%
o [0 \ 5 s | 39.28%
o [0 [ 5 s | 64.28%
n  [19 \ . | 45%
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mAP bounds:

e Unpredictability:

* Not random!

* Follows no statistic!

e Tends to be systemic.

e Cannot be (easily) detected.

¢ Bounds are deterministic, predictable, and

fast:
e mAP~(D,R) = mAP(D+exR,R)
e mAP'(D,R) = mAP(D—exR,R)
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Any empirical evidence?
Does it ever happen in the real world?

Amplified Visualization:

GW PHOCNET Indicative Retrievals Cosine

e They are rare.
e We only found one PHOCNet on GW! SINEE

e State-of-the-art word spotter.

® 899 samples, 166 classes.

* A single collision with an measurable
impact on mAP ~ 0.05%

e What about edit-distances? HOC
embeddings?

nnnnnnnn
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What is the worst case scenario?
Who cares about .05%?

e Example 1000 samples of 10 classes:

e Zero distance matrix: mAPT = 100%

e Zero distance matrix: mAP™ = 5.18%

e Zero distance matrix + e * white-noise = Random distance matrix
¢ Random distance matrix: E[mAP] = 10.4%

e Random distance matrix: Gy,ap = 0.053%
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Deceptive/Adversarial Solutions

® The set-up:
e Can we control the order in whitch
samples are evaluated?
e Or are they simply ordered by class?
¢ Self-classification of 1000 samples with 10
classes
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Deceptive/Adversarial Solutions

800 1000

L4 The Set'up: —— MAP 10.31%

e Can we control the order in whitch R
samples are evaluated?
e Or are they simply ordered by class?
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¢ Self-classification of 1000 samples with 10
classes
¢ The all-zero cheat:

e From 10.4% to 18.68% 0
® > 155% Opap °

~
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mAP expectation

The true AP: E[AP] over all permutations of equidistant samples.

® Dynamic programming

o(n)— > o(n?)?

O(r+1)— > O(r+1)

Algorithm:

Map every permutation to a path from top-left to bottom-right
Relevant: move down

Irrelevant: move right

Compute the probability of every cell Pgey(n, k)

Compute the probability a cell is used Pparent(n, k)

Compute PQO(n, k)

R /
AP = Z‘n:|1 ‘k|:1 Pcell(na k)Pparent(n,k)
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Dynamic AP

e |nput: Ambiguous retrievals Sampe ditances

== Relevant
= relovant |
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Dynamic AP

¢ |nput: Ambiguous retrievals possibi transiions
e Compute possible paths

Relevant

6 [
Irrelevant
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Dynamic AP

¢ |nput: Ambiguous retrievals
e Compute possible paths
e Compute cell probability

Possibie Children
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Dynamic AP

Input: Ambiguous retrievals

Compute possible paths
e Compute cell probability
e Compute contribution probability...

Relevant Parent Path Count

P(contributing)
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Dynamic AP

Input: Ambiguous retrievals
e Compute possible paths
e Compute cell probability

e Compute contribution probability...

Compute PQ@
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Dynamic AP

¢ |nput: Ambiguous retrievals
e Compute possible paths
e Compute cell probability

e Compute contribution probability...

e Compute PQ@
e Compute AP
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Conclusions

e Performance Metrics should be held to a
higher standard than methods.

¢ Equidistant samples can have a measurable
impact in real world scenarios.

¢ They hard to detect!

e They could be exploited with adversarial
solutions.

e They are easy to combat: mAP™!

¢ True mAP of ambiguous sorting
complicated.

e Don’t use mAP on weak systems / hard
benchmarks.

e How about architecture search? could Al
learn to cheat with mAP?
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