Present and Future of the IPOL Journal
Machine Learning Applications

Miguel Colom
http://mcolom.info
CMLA, ENS Paris-Saclay
What is Reproducible Research?

- It redefines the **result of the research**.
- It is **not just a paper**!
- It is:
 - The research **article**
 - The **computational facility** which recreates the results given the input data
 - The **source code**
 - The **data**
Why Reproducible Research is Needed?

- The **results** in the published paper may be **wrong**
- The results in the published paper may not be **generalizable** (only work with that particular images)
- The procedure described in the paper may be **inaccurate, vague, or incomplete**.
- Published paper usually **don't have space enough to describe all details** (which are need to implement a method!). For example: all parameters in algo subalgorithm. Pre/post processing steps?
- The **source code** of the method **may not be available** or the author may refuse to make it public (because of a patent, for example)
- A paper doesn't allow to **compare** results with other methods
Reproducibility and Repeatibility

- **Reproducibility**: the ability to obtain the same results of a reference experiment.
- **Repeatibility**: the ability to perform the experiment as many time as needed.

- Both are needed in Reproducible Research.
- Always easy to obtain? **No**! For example, in Biology:
 - The experiment may not be reproducible since it is impossible to know all the exact conditions
 - Repeating a biological experiment may take months or even years! (for example, studying the effect of a gene mutation in mice generations).
- **Do not trust** the authors. Just **try** and **evaluate** the algorithm **yourself**.
Reproducibility and Repeatibility in Image Processing

- **Similar to Biology? NO!**

- Since the algorithms are completely **well defined** using proper mathematical descriptions, it is possible to **reproduce** and **repeat** all experiments.
Reproducibility and Repeatibility in Image Processing

• Then, **why not always done?**

• Several reasons:
 - The **source code** of the authors is **not of enough quality** (readability, correctness, usability, style) and they **don't want to make it public**.
 - The source code **might not do exactly what is described** in the paper.
 - It **takes more time** to properly design a good demonstrator than writing a paper
 - Not only the **paper** will be peer-reviewed, but also the source code of the **algorithm** (checking that is does exactly what is described in the paper).
Summary

- **software** is part of the research work

- software needs be **published**
 - with a **review process**
 - with **quality criteria**

- In the particular case of IPOL we have:
 - detailed algorithms
 - **verified** and usable code
 - instant test **demos**
Benefits of having a RR demonstrator

- **Comparisons** with other methods **easier**
- The results can be **trusted**, since they passed an exigent **peer-review** process
- The number of **citations** of the article grow when the scientific community can **reproduce** and **compare** the results of the methods (look at IPOL articles)
- More **visibility** to the paper
- **Convincing** results
Disadvantages for the author

- It takes **much more time** than writing a regular article in a journal
- The submitted software must comply with some **strict software guidelines**: readability, documented, portable, standard
- The **peer-review** process is in general more **exigent** and thorough compared to a ordinary journal
What is IPOL?

- An Image Processing (OnLine) journal
- Each article: source code + PDF article + demo
- All peer reviewed
- Open source software
IPOL demos workflow

1) Users choose an input (or upload their own)
2) The user sets the parameters of that image and click on the “Run“ button.
3) The algorithm (C/C++, Matlab, …) is executed and the results are shown in the browser.
4) The results are archived if the input image was uploaded.
IPOL

Let us see it in action!
Criticism to IPOL

- Excessive *effort* to arrive at a *reproducible article*
- Length and *duration* of the *peer-review* reports --> We’ve started a new *fast review process* in June 2018.
- Lack of an official *Impact Factor*
- Lack of *GPU* --> They’ll be available in *2018*
The present (I)

- IPOL: more than 8 years publishing
- Well-established journal
- 133 articles published, 4 articles accepted, 14 preprints
- 261,197 unique visits in 2017. Code/data downloaded 12,173 times
- Archive: more than 250,000 experiments in 8 years
- More than 1,000,000 online executions in 8 years
The present (II)

- MATLAB and Python also accepted languages
- Servers with GPU to arrive
- The most relevant topics in Image Processing are already in IPOL (classic and state of the art)
- Demo system: full architecture of microservices.
- Video demos are possible
- Indexed by SCOPUS. In the Thomson-Reuters Emerging Sources Citation Index
The future

- Obtain an **Impact Factor**
- Improve the overall *design* of the *website*
- **Extend IPOL** from only Image/Video Processing to Machine Learning Applications
Extension to Machine Learning Applications
Current Architecture
Limitations

- OK for isolated demos. Can add new datatypes (video, audio, 3D, interactive controls, ...)
- Demo: standalone. Does not share information with the others. Stateless.
- Not well adapted to Machine Learning applications
- New concept: Application
- Major changes in the architecture needed
Demo vs Application

- **Execution time**: demo start and **ends** shortly. Application does never ends.

- The Application can be **sleeping** when there’s no activity. It might **wake up** when a new experiment is added to the archive, to learn. Can wake up regularly to perform needed tasks.

- **ML** applications are **more complex**:
 - Pre-processing more complex (more heterogenous, less structured)
 - Standardization of the data
 - Access permission to the data by different types of users
AppCore: same role as current DemoCore, but to control the execution of Applications
New ML Architecture

Databases: storage and management of training and testing datasets
New ML Architecture

UserAccess: lists of users and authorization management
New ML Architecture

Standardizer: to structure the data in a format understood by the system and the algorithms
Preprocessing: treatment of heterogeneous data in order to process it by the algorithm. For example: treat NAs, normalize variance, change sampling rate of sensor, etc.
New ML Architecture

Archive: allow structured access of a demo to its own and eventually other demos’s experiments (according to the configured permissions).
Wanted features: comparison of algorithms

- Need to define **formats** to **homogenize** the outputs of diverse algorithms. The **Standardizer** module will do it.
- In the case of missing data or if **preprocessing** is needed, then the **Preprocessing** module will be invoked too.
- For **evaluation**: datasets are previously **annotated** by experts and serve as a **ground-truth** to evaluate the algorithms. The module responsible for storing the testing and learning databases: **Databases**
Wanted features: **chaining of algorithms**

- In short: **connect** the **output** of one algorithm with the **input** of the other.
- The **Standardizer** module will take care of choosing the right format
- **No need** to manually **write wrappers**
Conclusions

- IPOL managed to create a simple system for editors/users to create demos quickly
- Archive of more than 250,000 experiments.
- More than 1,000,000 executions so far
- The journal is used by many academics and industrials
- Not an Impact Factor yet. This discourages authors to submit their work
- We expect a large impact in the ML community with the extended system

- Free to use. Free software. Free knowledge. Please contribute! :)}
Thank you for your attention!

Miguel Colom
http://mcolom.info

CMLA, ENS Paris-Saclay